The transformer function takes a bamlss.frame object and transforms the response and the design matrices to account for lag 1 autocorrelation. The method is also known as Prais-Winsten estimation.

trans_AR1(rho = 0.1)
AR1(rho = 0.1)

Arguments

rho

Specifies the correlation parameter at lag 1.

Value

A transformer function which can be used in the bamlss call.

References

Johnston, John (1972). Econometric Methods (2nd ed.). New York: McGraw-Hill. pp. 259--265.

Examples

if (FALSE) ## Simulate AR1 data.
set.seed(111)

n <- 240
d <- data.frame("t" = 1:n)

## Nonlinear function.
f <- function(x) {
  2 + sin(x / n * 2 * pi - pi)
}

## Correlated errors.
rho <- 0.8
e <- rnorm(n, sd = 0.1)
u <- c(e[1], rep(NA, n - 1))
for(i in 2:n){
  u[i] <- rho * u[i - 1] + e[i]
}

## Response.
d$y <- f(d$t) + u

## Plot time-series data.
plot(d, type = "l")

## Estimate models without and with AR1 transformation.
b0 <- bamlss(y ~ s(t,k=20), data = d, criterion = "BIC")
#> BIC 136.4084 logPost -97.6646 logLik -44.2986 edf 8.7236 eps 0.3974 iteration   1
#> BIC -41.9715 logPost  -8.4746 logLik  44.8913 edf 8.7236 eps 0.1812 iteration   2
#> BIC -152.399 logPost  46.7393 logLik 100.1053 edf 8.7236 eps 0.1157 iteration   3
#> BIC -189.094 logPost  75.9567 logLik 119.8168 edf 9.2214 eps 0.0649 iteration   4
#> BIC -221.762 logPost  91.1354 logLik 153.2188 edf 15.449 eps 0.0523 iteration   5
#> BIC -228.519 logPost  93.8649 logLik 162.6250 edf 17.649 eps 0.0209 iteration   6
#> BIC -228.766 logPost  94.0024 logLik 163.9364 edf 18.083 eps 0.0033 iteration   7
#> BIC -228.770 logPost  94.0090 logLik 164.1063 edf 18.144 eps 0.0002 iteration   8
#> BIC -228.770 logPost  94.0093 logLik 164.1187 edf 18.148 eps 0.0000 iteration   9
#> BIC -228.770 logPost  94.0093 logLik 164.1187 edf 18.148 eps 0.0000 iteration   9
#> elapsed time:  0.08sec
#> Starting the sampler...
#> 
#> |                    |   0%  1.19sec
#> |*                   |   5%  3.38sec  0.18sec
#> |**                  |  10%  2.24sec  0.25sec
#> |***                 |  15%  1.88sec  0.33sec
#> |****                |  20%  1.62sec  0.40sec
#> |*****               |  25%  1.43sec  0.48sec
#> |******              |  30%  1.33sec  0.57sec
#> |*******             |  35%  1.19sec  0.64sec
#> |********            |  40%  1.07sec  0.71sec
#> |*********           |  45%  0.95sec  0.78sec
#> |**********          |  50%  0.85sec  0.85sec
#> |***********         |  55%  0.75sec  0.92sec
#> |************        |  60%  0.65sec  0.98sec
#> |*************       |  65%  0.57sec  1.05sec
#> |**************      |  70%  0.48sec  1.11sec
#> |***************     |  75%  0.40sec  1.19sec
#> |****************    |  80%  0.32sec  1.27sec
#> |*****************   |  85%  0.24sec  1.35sec
#> |******************  |  90%  0.16sec  1.42sec
#> |******************* |  95%  0.08sec  1.50sec
#> |********************| 100%  0.00sec  1.59sec
b1 <- bamlss(y ~ s(t,k=20), data = d, criterion = "BIC",
  transform = AR1(rho = 0.8))
#> BIC 120.6978 logPost -100.564 logLik -19.7587 edf 14.812 eps 0.4482 iteration   1
#> BIC -183.664 logPost  54.4906 logLik 112.0547 edf 7.3797 eps 0.1809 iteration   2
#> BIC -316.134 logPost 120.7259 logLik 178.2900 edf 7.3797 eps 0.1060 iteration   3
#> BIC -372.549 logPost 148.9333 logLik 206.4974 edf 7.3797 eps 0.0648 iteration   4
#> BIC -381.197 logPost 153.2571 logLik 210.8212 edf 7.3797 eps 0.0266 iteration   5
#> BIC -380.659 logPost 169.9073 logLik 211.2022 edf 7.6169 eps 0.0059 iteration   6
#> BIC -380.659 logPost 169.9076 logLik 211.2025 edf 7.6169 eps 0.0002 iteration   7
#> BIC -380.659 logPost 169.9076 logLik 211.2025 edf 7.6169 eps 0.0000 iteration   8
#> BIC -380.659 logPost 169.9076 logLik 211.2025 edf 7.6169 eps 0.0000 iteration   8
#> elapsed time:  0.10sec
#> Starting the sampler...
#> 
#> |                    |   0%  1.19sec
#> |*                   |   5%  1.22sec  0.06sec
#> |**                  |  10%  1.15sec  0.13sec
#> |***                 |  15%  1.07sec  0.19sec
#> |****                |  20%  1.03sec  0.26sec
#> |*****               |  25%  1.03sec  0.34sec
#> |******              |  30%  1.21sec  0.52sec
#> |*******             |  35%  1.09sec  0.58sec
#> |********            |  40%  1.00sec  0.67sec
#> |*********           |  45%  0.90sec  0.73sec
#> |**********          |  50%  0.80sec  0.80sec
#> |***********         |  55%  0.71sec  0.87sec
#> |************        |  60%  0.62sec  0.94sec
#> |*************       |  65%  0.54sec  1.01sec
#> |**************      |  70%  0.47sec  1.11sec
#> |***************     |  75%  0.39sec  1.18sec
#> |****************    |  80%  0.31sec  1.24sec
#> |*****************   |  85%  0.23sec  1.31sec
#> |******************  |  90%  0.15sec  1.38sec
#> |******************* |  95%  0.08sec  1.46sec
#> |********************| 100%  0.00sec  1.55sec

## Estimate full AR1 model.
b2 <- bamlss(y ~ s(t,k=20), data = d, criterion = "BIC",
  family = "AR1")
#> BIC 128.8853 logPost -98.9894 logLik -37.7967 edf 9.7236 eps 0.5982 iteration   1
#> BIC -80.2651 logPost   5.5858 logLik  66.7784 edf 9.7236 eps 0.1685 iteration   2
#> BIC -246.753 logPost  88.8299 logLik 150.0225 edf 9.7236 eps 0.1025 iteration   3
#> BIC -339.747 logPost 135.3267 logLik 196.5194 edf 9.7236 eps 0.0643 iteration   4
#> BIC -363.204 logPost 147.0552 logLik 208.2479 edf 9.7236 eps 0.0326 iteration   5
#> BIC -348.719 logPost 157.7974 logLik 209.1956 edf 12.712 eps 0.0083 iteration   6
#> BIC -348.723 logPost 157.7992 logLik 209.1975 edf 12.712 eps 0.0006 iteration   7
#> BIC -348.723 logPost 157.7993 logLik 209.1975 edf 12.712 eps 0.0001 iteration   8
#> BIC -348.723 logPost 157.7993 logLik 209.1975 edf 12.712 eps 0.0000 iteration   9
#> BIC -348.723 logPost 157.7993 logLik 209.1975 edf 12.712 eps 0.0000 iteration   9
#> elapsed time:  0.16sec
#> Starting the sampler...
#> 
#> |                    |   0%  1.67sec
#> |*                   |   5%  2.32sec  0.12sec
#> |**                  |  10%  2.03sec  0.23sec
#> |***                 |  15%  1.97sec  0.35sec
#> |****                |  20%  1.82sec  0.45sec
#> |*****               |  25%  1.67sec  0.56sec
#> |******              |  30%  1.53sec  0.65sec
#> |*******             |  35%  1.40sec  0.75sec
#> |********            |  40%  1.28sec  0.85sec
#> |*********           |  45%  1.16sec  0.95sec
#> |**********          |  50%  1.05sec  1.05sec
#> |***********         |  55%  0.94sec  1.15sec
#> |************        |  60%  0.84sec  1.26sec
#> |*************       |  65%  0.74sec  1.37sec
#> |**************      |  70%  0.63sec  1.48sec
#> |***************     |  75%  0.53sec  1.58sec
#> |****************    |  80%  0.42sec  1.67sec
#> |*****************   |  85%  0.31sec  1.77sec
#> |******************  |  90%  0.21sec  1.87sec
#> |******************* |  95%  0.10sec  1.97sec
#> |********************| 100%  0.00sec  2.06sec
rho <- predict(b2, model = "rho", type = "parameter")
print(range(rho))
#> [1] 0.7360218 0.7360218

## Estimated standard deviations.
sd0 <- predict(b0, model = "sigma", type = "parameter")
sd1 <- predict(b1, model = "sigma", type = "parameter")
sd2 <- predict(b2, model = "sigma", type = "parameter")
print(round(c(sd0[1], sd1[1], sd2[1]), 2))
#> [1] 0.13 0.00 0.10

## Plot fitted trends.
p0 <- predict(b0, model = "mu")
p1 <- predict(b1, model = "mu")
p2 <- predict(b2, model = "mu")

plot(d, type = "l")
lines(f(d$t) ~ d$t, col = 2, lwd = 2)
lines(p0 ~ d$t, col = 4, lwd = 2)
lines(p1 ~ d$t, col = 3, lwd = 3)
lines(p2 ~ d$t, col = 5, lwd = 3)
legend("topleft",
  c("no trans", "with trans", "AR1 model", "truth"),
  lwd = 2, col = c(4, 3, 5, 2), bty = "n")